State of the Art and Prospects of Rosaviacosmos Projects on Reusable Space Transportation Systems

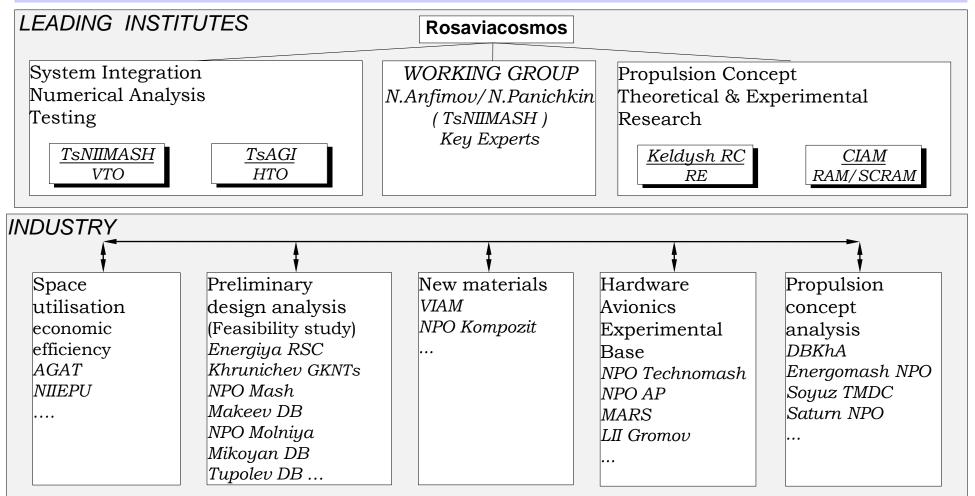
Workshop on Long-term Russian – European cooperation in Space, Moscow, Russia

Anfimov Nikolay, Kostromin Sergey, Panichkin Nikolay, Tsvetkov Andrey

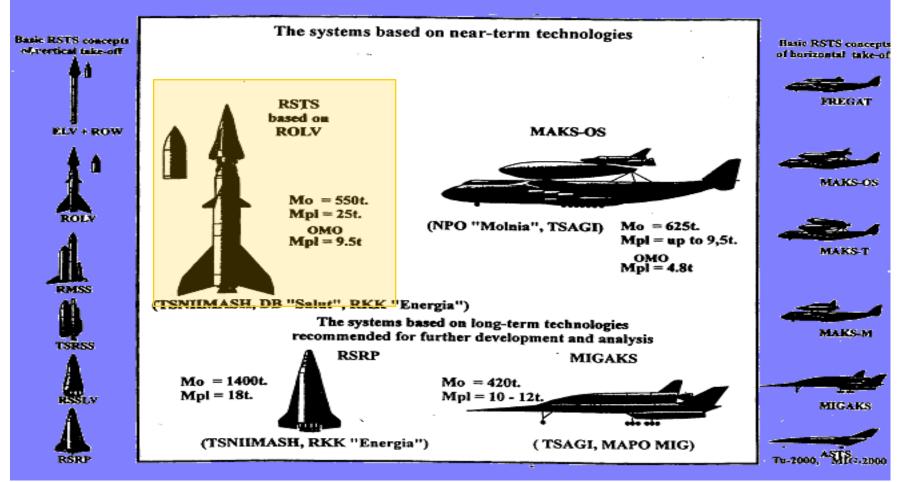
March 5, 2002

OBJECTIVES OF RUSSIAN "ORYOL"/"GRIF" PROGRAMS

- Economical efficiency of Space Transportation System due to Reusability
- Sustainable development of Competitiveness in Space Transportation System Technology through Innovations
- Independent Access to Space in Future
- Creation of New Space Markets (elastic demand)
- Shrinking or Liquidation of Drop Zones
- New Functional Parameters (readiness to flight, better condition for manned flights etc.)
- Increasing of Reliability and Safety of Space Flights
- «Test bed» for International Large Scale Cooperation and Division of Labor in High Technology Projects

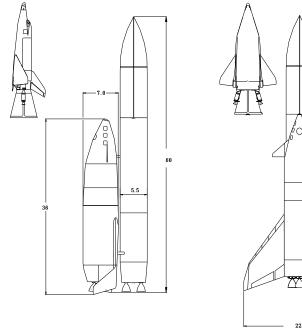

OBJECTIVES OF RUSSIAN "ORYOL" / "GRIF" PROGRAMS (CONT.)

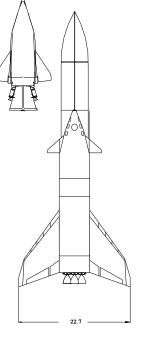
- ORYOL Program 1993-2000
- **Priorities:** System study, Preliminary Design Works, Advanced Technology Identification and Research
- GRIF Program 2001-2003
- **Priorities**: Development of key technologies, Development of Ground Test and Flight Demonstration Programs, System studies and complex validation of Reusable Space Transportation Systems (RSTS) creation and operation prospects

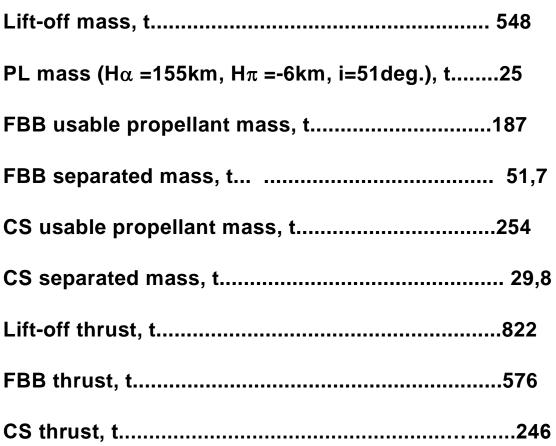

"ORYOL" / "GRIF" PROGRAMS MANAGEMENT SCHEME

REUSABLE SPACE TRANSPORTATION SYSTEMS (RSTS) - «ORYOL» PROGRAM

ROSAVIACOSMOS / TSNIIMASH


EVALUATED PERFORMANCES OF BASIC "ORYOL" RSTS CONCEPTS


RSTS	-	ons based on technologies	Conceptions based on long-term technologies		
conceptions	ROLV	MAKS-OS	RSRP	MIGAKS	
Number of stages	2	2	1	2	
Take-off mode	Vertical	Horizontal	Vertical	Horizontal	
Landing mode	Horizontal	Horizontal	Horizontal	Horizontal	
Reusability	Partial	Partial	Full	Full	
Take-off mass	550 t	625 t	1400 t	420 t	
1st.	52 t	290 t	141 t.	180 t.	
Landing mass					
2st.	11,5 t (ROV)	21,5 t (OP)		40 t	
1st.	LRE	TJ	LRE	TJ+Scramjet	
Engine types					
2st.	LRE	LRE		LRE	
1st.	187 t (LH2+LOX)	84 t (Kerosene)	1202 t	75 t (Ker+LH2)	
Propellant mass		242 t	(Ker+LH2+LOX)		
2st.	254 t (LH2+LOX)	(Ker+LH2+LOX)		124 t (LH2+LOX)	
Payload up mass	25 t	8 ÷10 t	18 t	10÷12 t	
(H-200 km. j-51°)					
Payload down mass	2.5 t	6.3 t	10 t	12 t	



GENERAL ARRANGEMENT AND PERFORMANCES OF THE ROLV-BASED RRSS

ROLV OPTIONS PERFORMANCES BY THE RESULTS OF DESIGN BUREAUS WORKS

Designer	Option 1 RKK "Energia"	Option 2 RKK "Energia"	Option3 RKK "Energia"	Option 4 RKK "Energia"	Option 5 DB "Salut"	Option 6 DB "Salut"	Option 7 DB "Salut"	Option 8 DB "Salut"	Option 9 NPO Mash	Option 10 TsNIIMASH
Project date	1996	1995	1995	1995	1997	1997	1995	1995	1995	1995
ROLV lift-off mass, t	674	670	670	750	624	750	763	533	570	548
Payload mass H=200km; i=51°, t	26	25,4	25,9	27,1	25	24,1	26,1-28	22,7-21,9	25	25

KEY TECHNOLOGIES OF REUSABLE SPACE TRANSPORTATION SYSTEM

Materials and Structures (M&S):

- new structural light-weight AI-Li alloys
- composite three-layer (sandwich) structures with coal-plastic load-bearing layers
- composite wall liner structure for fuel tanks and high pressure vessels
- combined intermetallics for structure and heat-protection
- metal and composite sandwich coal-plastic structures

Reusable Rocket Engines (RRE):

- optimization of power parameters, selection of the RRE scheme and propellant components
- RRE design parameters improvement
- improving or development of new industrial technological processes, equipment
- composition and technology for highly effective heat-protection coating
- seals for on-ground operation
- heat resisting materials and coatings for gas and oxidizing channels of the engine
- maintenance of propellant components rectification
- structurally perfect armature and its materials
- hydrostatic bearing for oxygen pumps of RRE turbo-pump aggregate
- metal-silicon coatings for heat-intensive units of RRE
- new alloys and composite materials for blades of turbines safe life extension
- unified emergency protection system of early diagnostic channel
- technology for turbine ceramic disks with metal shaft soldering;

- technical diagnostic system including measurement system and sensor instrumentation. *Aerogasdynamics :*

- some refinements of several calculation methods and ground test facilities

KEY TECHNOLOGIES OF REUSABLE SPACE TRANSPORTATION SYSTEM (continued)

Heat Exchange Processes (HEP) and Thermal Protection System (TPS):

-thermal insulation structure based on application of low conductivity honeycomb structures
-combined heat- protection / cryogenic insulation structure for cryogenic fuel tanks
-technology and ground test facility for research of thermo-mechanical stability of LV coatings
-TPS materials thermal stability development
-experimental research of heat exchange with use of fast Infra-Red scanning camera
-calculation of complex shape vehicle TPS convection heat exchange at their 3D streamline
-physical-chemical models and software for calculation of high-temperature flows of non-

equilibrium multicomponent radiate gas

Guidance and Navigation Systems (GNS):

-mathematical RSTS models as objects of flight control

-utilization of navigational systems based on perspective inertial sensing elements

-multichannel small-sized instrumentation of satellite navigation with small weight and powerconsumption

-data integration on the most responsible modes of flight

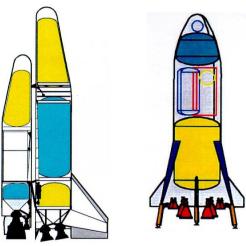
Project management (PM):

- -Total risk management technology
- -RSTS life cycle cost parametric model
- -system engineering of reliability, life time, safety of RSTS and its elements

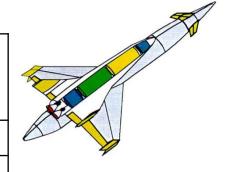
RSTS PM technology on the whole

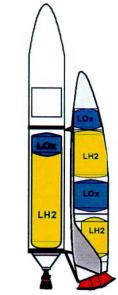
INTERNATIONAL COOPERATION

SPECIFICITY OF RSTS PROGRAMS


- Market driving
- Economical viability and Technological feasibility as a trade-off within the specified time limit
- High Concentration of Key Innovative Technologies
- Extremely High Cost of Programs
- Governmental funding is a mandatory requirement for R&D phase
- International Collaboration is conceived as a preferable option to provide Program affordability

RLV PROGRAM LIFE CYCLE COST ESTIMATION (Data from FESTIP)


life evels shaes

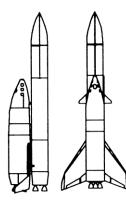


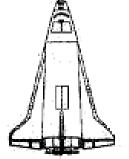
	•Operation
	•Disposal
	Total
	* Ass
- AN	Opera
	Laun
	Opera
	Total
	- 4 1

Life cycle phase	Average cost Bil., USD
 Development 	18,0
 Manufacturing 	22,0
 Operation 	10,0
 Disposal 	0,185
Total	50,185

RUSSIAN EXPERIENCE OF COMMERCIAL AND JOINT WORKS ON FOREIGN RSTS PROGRAMS (1992-2001)

- Hermes, MSTP (CTV), FESTIP Europe
 Sanger, ASTRA Germany
- □Interim-HOTOL Great Britain
- □ Prepha, ANGEL France
- **HOPE** Japan
- □ X-Planes, incl. Delta Clipper; K-1 etc. USA


JOINT TEAM ON ORYOL- FESTIP PROGRAMS COLLABORATIVE WORKS (1996-1998)



MAIN RESULTS OF COLLABORATIVE WORKS OVER ORYOL (RKA) AND FESTIP (ESA) PROGRAMMES in 1996-98

Selected RSTS Concepts

FESTIP	ORYOL		FESTIP	ORYOL
FSSC-16sr	ROLV		FSSC-15	RSRP
VTHL	VTHL	MODE of Take-off and Landing	HT(sled) HL	VTHL
516	674	Lift-off mass, t	582	1400
20.5	26.5	Payload mass, t	14.8	18
LRE /	LRE/	Propulsion System	LRE /	LRE/
LH+LOX	LH+LOX		LH+LOX	LH+LOX+KER

MAIN RESULTS OF COLLABORATIVE WORKS OVER ORYOL (RKA) AND FESTIP (ESA) PROGRAMMES in 1996-98 (continued)

Key Technologies

During discussions of a future "Technology Development and Verification Planning" (TDVP) by both sides two major areas are identified of most critical importance:

Reusable Liquid Rocket Propulsion;

Development of low mass advanced heat resistant materials and structures.

Combined propulsion technologies are of common interest as long-term perspective.

The need for flight testing and demonstration of those technologies which cannot be sufficiently and reliably demonstrated on ground was further emphasized.

FESTIP: In Flight Experimentation will be a substantial part of the continuation within a future ESA program ("FLTP").

ORYOL: To provide the development of an advanced HFL ("Hypersonic Flying Laboratory") it is assumed to use available aircraft and rockets for launching hypersonic test-beds.

A continuation of collaborative work is strongly recommended.

STATE-OF-THE ART AND PROSPECTS OF RUSSIAN -EUROPEAN COLLABORATION ON RSTS PROGRAMS

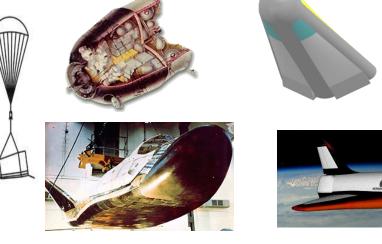
- Great experience of European/Russian Collaboration between Agencies and Industries was achieved for the Period 1992-2001.
- During 2001- 2002 it was signed a set of Protocols, Agreements and Contracts both for Joint and Commercial Works

From Russian side: - Rosaviacosmos, TSNIIMASH, Keldysh Center, Khrunichev Center, TSAGI, CIAM, LII Gromov, Energomash and others

From European side: ESA, CNES, DLR, EADS, ASTRIUM, SNECMA and others

- The convergence of Russian and European Approach on Basic Concepts (RFS and SSTO-VTO) and Key Technologies was achieved. Thus the necessary prerequisites for further near and mid term joint system study, ground and flight experimentation were created
- Long term objectives on Russian-European Collaboration, including joint manufacturing and commercial operation have to be discussed and investigated

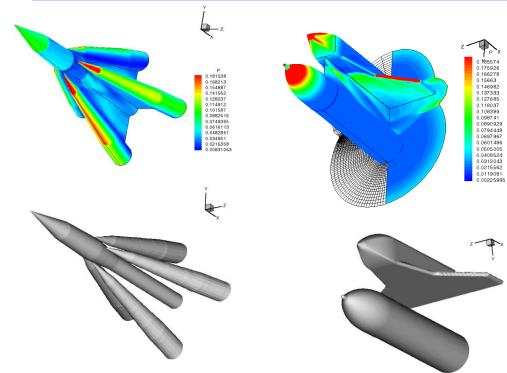
POTENTIAL AREAS OF RUSSIAN-EUROPEAN

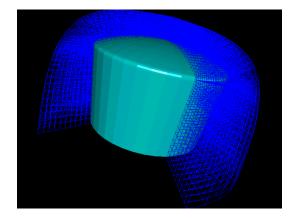

NEAR TERM COLLABORATION

System Study

- > RFS, including LFBB for both Partially and Fully Reusable LV
- New Generation of Reusable Orbital Vehicle (ROV)
- Ground Experimentation (TBD)
- Key technologies on ATD, TPS, Materials & Structures, GNS, RRE
- Flight Experimentation (TBD)

РОСАВИАКОСМОС





RUSSIAN INTERNAL TOOLS FOR COMPUTATION OF SPACE SYSTEMS AND ITS AGREGATES

RUSSIAN GROUND TEST FACILITY FOR RSTS RESEARCH

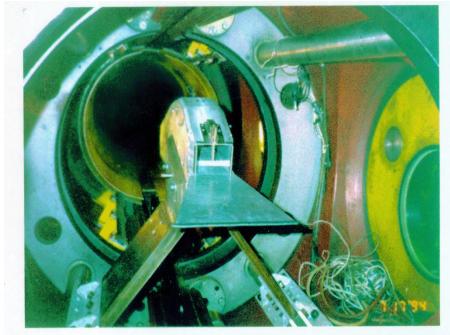
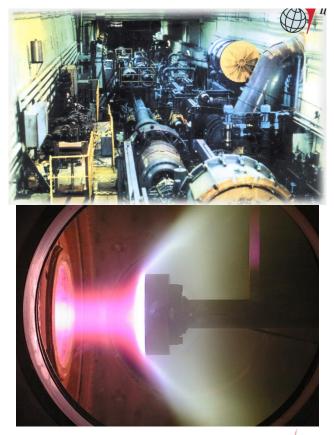
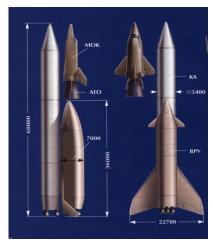
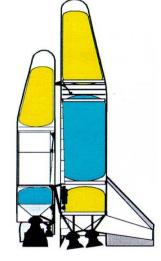



Fig. Front view of NASA GASL model mounted in PGU-11 test section.





EURUS 2015?

